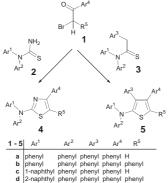
896 Chemistry Letters 2002

Arylated Mono- and Bifunctional 2-Aminothiophenes and 2-Aminothiazoles as a New Class of Hole Transport Materials

Andreas Kanitz, Jörg Schumann, Marcus Scheffel, Sambatra Rajoelson, Wolfgang Rogler, Horst Hartmann,*† and Dirk Rohde†

SIEMENS AG, Paul-Gossen-Str., D-91050 Erlangen, Germany


†Fachhochschule Merseburg, Geusaer Str., D-06217 Merseburg, Germany

(Received March 18, 2002; CL-020253)

By using the well-known Hantzsch method and starting from some mono- and bifunctional aryl-substituted thioureas, thioacetamides, and bromoketones several new aryl-substituted 2-aminothiazoles and 2-aminothiophenes have been prepared and tested as hole transport materials for OLEDs.

In the last time several aryl-substituted thiophenes received an increasing interest as building block for oligomers and polymers with a tunable electric conductivity. Usually, these compounds were prepared by heavy metal-catalysed coupling reactions of simple thiophenes with halo-substituted benzenes. Although these methods give rise, in common, to high yields of products they are generally contaminated by traces of the heavy metal catalyst. Because traces of heavy-metals have, however, a negative influence on the electric and optical properties of the products their separation is urgently necessary to make them suitable for technical uses. Of course, this procedure is, in common, a time-consuming procedure which raises the price of products significantly.

Now we will report on a simple, heavy metal-free route to arylsubstituted 2-aminothiophenes and 2-aminothiazoles which also can serve to produce versatile building blocks for new materials with a high electric conductivity. This synthetic route uses the well-known Hantzsch method and starts from simply available arylsubstituted thioureas, thioacetamides, and haloketones. Thus, arylsubstituted 2-aminothiazoles of the general structure 4 were prepared by starting from corresponding aryl-substituted thioureas 2 and aryl-substituted 2-bromoethanones 1. Analogously, arylsubstituted 2-aminothiophenes 5 were prepared from the same haloketones 1 and aryl-substituted thioacetamides 3 according to an earlier reported method.

Scheme 1

For receiving high yields of products special reaction conditions have to be applied. Thus, the aryl-substituted 2-aminothiazoles 4 are available by heating of the corresponding educts 1 and 2 in ethanol or DMF. The aryl-substituted 2-aminothiophenes 5 are available by allowing to react the aryl substituted thioacetamides 3 with the bromoketones 1 in acetic anhydride at room temperature followed by gentle heating of the reaction mixture with triethylamine. The sulphur-containing

starting materials 2 and 3 were prepared by reported methods for thioureas⁵ and thioacetamides.⁶

The described method can also be applied, as we found, for the synthesis of arylated bis(2-aminothiazoles) 9 and 10 as well as for arylated bis(2-aminothiophenes) 11 and 12. To this, the bromoketone 6,⁷ the bifunctional thiourea 7 and the thioacetamide 8 were used. The last-mentioned compounds can be prepared analogously to their monofunctional derivatives 2 and 3 according to reported methods for simple precursors.⁸ Their transformation into corresponding products was performed in the same way as described for the synthesis of the mono-heterocyclic compounds 4 and 5 by heating of the required components in a polar solvent in presence of triethylamine.

The new 2-aminothioazoles and 2-aminothiophenes **4**, **5**, and **9–12** prepared have been characterized by elemental analysis, mass spectrometry, and NMR spectroscopy. For selected data see Table 1.

All heterocyclic compounds **4**, **5**, and **9–12** exhibit, as demonstrated by DSC and cyclic voltammetry, a high tendency to form amorphous glasses after cooling their melts and low oxidation potentials. Reversible potentials were found, however, only with the compounds **9–12**. This means, that under the applied conditions the radical cations formed from the monoheterocyclic compounds **4** and **5** are less stable. They can dimerise giving rise to the formation of corresponding bithiazoles or bithiophenes as will be demonstrated in detail in a forthcoming paper.

Chemistry Letters 2002 897

Nr	Ar ¹	R ⁵	Yield/%	T _m ^a /°C	$T_{\rm d}^{\rm a}/^{\circ}{\rm C}$	T _g ^a /°C	Type ^b	E _{ox} ^c /V	$\Delta E^{\rm d}/{\rm eV}$	Formula	Mass spectrume
4b	phenyl	phenyl	82	223	268	_	A	1.14 (ir)	4.03	$C_{27}H_{20}N_2S$	405.4 (MH ⁺ , 100%)
5a	phenyl	Н	67	102	230	20	C	1.00 (ir)	4.61	$C_{26}H_{21}NS$	404.3 (MH ⁺ , 100%)
5b	phenyl	phenyl	60	180	434	57	В	0.95 (r)	3.86	$C_{34}H_{25}NS$	479.3 (MH ⁺ , 100%)
5c	1-naphthyl	Н	51	64	252	51	C	1.10 (ir)	4.12	$C_{32}H_{23}NS$	454.4 (MH ⁺ , 100%)
5d	2-naphthyl	phenyl	88	198	330	61	В	0.73 (r)	3.83	$C_{38}H_{27}NS$	529.4 (MH ⁺ , 100%)
9			63	232	391	72	В	0.95 (qr), 1.00 (qr)	4.52	$C_{42}H_{30}N_4S_2$	655.4 (MH ⁺ , 100%)
10		phenyl	53	302	418	91	В	1.01 (r), 1.23 (qr)	4.00	$C_{48}H_{34}N_4S_2$	731.4 (MH ⁺ , 100%)
11			37	262	368	87	В	0.64 (r)	3.90	$C_{56}H_{40}N_2S_2$	804.5 (M ⁺ , 100%)
12 ₁ a		Н	45	263	283	83	В	0.75 (qr), 1.13 (qr)	4.23	$C_{50}H_{36}N_2S_2$	728.3 (M ⁺ , 100%)
12_1b		phenyl	65	317	410	118	В	0,75 (r), 1.07 (r)	3.83	$C_{62}H_{44}N_2S_2$	880.5 (M ⁺ , 100%)
12_2b		phenyl	71	276	431	114	В	0.94 (qr)	3.94	$C_{68}H_{48}N_2S_2$	956.5 (M ⁺ , 100%)
1-Naphdata				247	448	117	C	0.52 (r), 0.76 (r)			
$\mathbf{NPD}^{\mathrm{f}}$				281	327	99	В	0.85 (r), 1.04 (r)			
$\mathbf{TPD}^{\mathrm{g}}$				173	367	63	C	0.82 (r), 0.95 (r)			

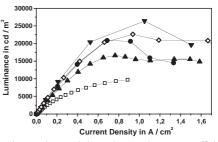
Table 1. Some characteristic substance data of the compounds prepared ($Ar^2 = Ar^3 = Ar^4 = phenyl$)

 aT_m : melting point, T_d : decomposition point, T_g glass transition point. bType A: recrystallisation at cooling, Type B: no crystallisation at cooling, recrystallisation above the T_g . cT_g : ir: irreversible potential, qr: quasi reversible potential, r: reversible potential, denergy of electronic absorption. cESI . fNPD : N, N'-bis(1-naphthyl)-N, N'-diphenyl-[1,1'-biphenenyl]-[4,4'-diamine. gTPD : N, N'-bis(3-tolyl)-N, N'-diphenyl-[1,1'-biphenyl]-[4,4'-diamine.

The bis-heterocyclic compounds **9–12** exhibiting reversible oxidation potentials were checked as hole transport materials in organic light emitting diodes (OLEDs). These have been manufactured by vacuum-evaporation on an ITO-coated glass substrate. The evaporation process was performed at 5×10^{-6} mbar with an evaporation rate of ca. 1–5 Å/s.

The effectiveness of the hole transport ability of the investigated compounds was estimated by measurement of the luminescence of Alq₃ as a function of the applied voltage or currency density and compared with some standard materials, such as 1-Naphdata¹⁰ or α -NPD.¹¹ Some results of these measurements are depicted in Figure 1.

In Figure 1 the luminance of several OLEDs as a function of the currenr density are shown. For each plot both the sequence of layers and the reached quantum efficiencies @ 1000 cd m $^{-2}$ are listed. For comparison, the plot of an internal standard-device, consisting of an ITO-Anode/Copper-Phthalocyanine (5 nm)/1-Naphdata (55 nm) as hole transport layer (HTM) $1/\alpha$ -NPD (5 nm) as HTM $2/\text{Alq}_3$ (60 nm)/LiF (0.5 nm)/Al-cathode (150 nm) is given. The layer-thickness used of HTM 1 was always 55 nm and 5 nm for HTM 2. The maximum of luminance of this OLED is measured as 21 000 cd m $^{-2}$ @ 0.68 A cm $^{-2}$ (\sim 14 V). The maximum of luminance in an OLED with the same thickness of layers and using 1-Naphdata as HTM 1 and compound 10 as HTM 2 is measured as 26 500 cd m $^{-2}$ @ 1.05 A cm $^{-2}$ (\sim 13 V).


Only satisfactory results were obtained with OLEDs manufactured with α -NPD as HTM 1 and 12_2b as HTM 2. An OLED in which both of the standard materials were substituted by the compounds 12_1b and 12_2b exhibit surprisingly a higher luminance efficiency as an OLED manufactured with the standard materials.

These data demonstrate that the N-perarylated 2-aminothiophenes and 2-aminothiazoles of the structure $9{\text -}12$ represent a new class of easily oxidizable compounds with a good tendency to form amorphous glasses in which the charged species formed by electrochemical oxidation exhibit a high mobility giving rise to a strong Alq₃ luminescence. They are easily available by a Hantzschtype reaction from mono-functional or bifunctional aryl-substituted thioureas or thioacetamides and 2-bromoethanones without using of any heavy metal catalyst which are, as mentioned above, implicitly necessary for the synthesis of the most of their carbocyclic analogues, e.g., for α -NPD and 1-Naphdata, or some thiophene-based starburst compounds recently described. 12,13

This work was financially supported by the BMBF and the SIEMENS AG, Erlangen, Germany.

References and Notes

1 "Electronic materials: The oligomer approach," ed. by K. Müllen and G. Wegner,

Figure 1. Luminance characteristics and external quantuum efficiencies (q.e.) of some OLEDs manufactured with several hole transport materials, \square : 12₁b/α-NPD (q.e. 0.79%), **●**: 1-Naphdata/α-NPD (q.e. 1.19%), **▲**: 1-Naphdata/12₂b (q.e. 1.05%), **▼**: 1-Naphdata/10 (q.e. 1.30%), \diamondsuit : 12₁b/12₂b (q.e. 1.33%).

Wiley-VCH, Weinheim (1998).

- D. Fichou, "Handbook of oligo- and polythiophenes," Wiley-VCH, Weinheim (1999).
- J. Liebscher, "Thiazoles," in Houben-Weyl, Methoden der Organischen Chemie, Georg Thieme, Stuttgart (1994), Vol. E8b.
- 4 H. Hartmann and J. Mayer, Z. Chem., 6, 28 (1962).
- H. Hartmann and I. Reuther, *J. Prakt. Chem.*, 315, 144 (1973).
- 6 Prepared from amides and P₂S₅ accordingly to V. Kindler, *Liebigs Ann. Chem.*, 431, 187 (1923).
- 7 C. Paal and H. Schulze, Ber. Dtsch. Chem. Ges., 35, 168 (1902).
- 8 N, N'-(bis-thiocarbamido)N, N'-diphenyl-1,4-phenylenediamine 7, m.p. 177°C, from 1,4-phenylenediamine via the corresponding N, N'-bis-(pivaloylthiourea) accordingly to Ref. 5; N, N'-(bis-phenylthioacetyl)N, N'-diphenyl-1,4-phenylene diamine 8, m.p. 223–227°C, from the corresponding bis-amide accordingly to ref. 6; N, N'-(bis-phenylthioacetyl)-N, N'-(diphenyl) benzidine 9, m.p. 190–194°C, from the corresponding bis-amide accordingly to Ref. 6.
- 4a: 13 C NMR (CDCl₃, 300 Mz) δ = 126.7, 126.8, 127.2, 128.8, 129.6, 130.6, 134.5, 135.9, 146.3, 152.8, 169.7; 5a: 120.8, 122.7, 123.3, 127.9, 127.8, 128.9, 129.1, 129.8, 130.0, 130.9, 136.0, 138.0, 138.4, 142.6, 147.3, 148.6; **5b**: 122.5, 123.0, 127.2, 127.3, 127.8, 128.1, 128.5, 129.1, 129.5, 130.0, 130.5, 131.6, 135.1,135.8, 136.4, 136.9, 137.9, 140.1, 145.1, 148.1; **5c**: 118.9, 120.1, 121.3, 125.5, 126.6, 126.7, 126.8, 127.0, 127.5, 127.6, 127.8, 128.9, 129.0, 129.1, 129.8, 129.9, 131.1, 131.2, 135.9, 136.3, 137.8, 138.0, 142.6, 143.8, 148.4, 151.3; **5d**: 118.6, 122.7, 122.9, 123.2, 125.0, 126.9, 127.2, 127.4, 127.7, 127.9, 128.1, 128.2, 128.6, 128.9, 129.2, 129.6, 130.0, 130.4, 130.5, 131.6, 134.9, 135.1, 135.8, 136.5, 136.8, 138.0, 140.2, 145.0, 145.8, 148.0, **9**: 113.8, 126.9, 128.8, 129.2, 129.3, 129.4, 130.6, 135.6, 141.7, 145.8, 150.8; **10**: 124.0, 125.6, 126.8, 127.3, 128.0, 128.4, $128.8,\ 129.4,\ 129.5,\ 130.6,\ 132.3,\ 135.3,141.7,\ 144.6,\ 145.9,\ 162.3,\ 165.7;\ \textbf{11}:$ $121.5, 122.1, 126.5, 126.6, 127.4, 127.8, 128.7, 128.8, 129.7, 130.6, 134.7, 135.4, 137.9, 140.9, 145.7, 147.0; \\ 12_1a: 119.3, 120.0, 121.3, 123.8, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 127.9, 126.8, 126.9, 126.9, 127.9, 126.8, 126.9$ 128.1, 128.8, 130.0, 135.1, 136.8, 136.9, 141.6, 142.1, 146.8, 148.2; **12**₁b: 120.1, 121.3, 123.8, 126.5, 126.9, 127.2,127.5, 127.7, 128.2, 128.8, 129.4, 129.8, 130.9, 134.5, 135.3, 136.1, 137.1, 138.8, 142.0, 144.5, 148.0; **12**₂**b**: 121.8. 122.0, 122.5, 126.6, 126.7, 127.0, 127.2, 127.6, 127.9, 128.3, 128.9, 129.4, 129.9, 131.0, 134.5,134.6, 135.2, 135.8, 136.3, 137.3, 139.6, 144.3, 146.5, 147.3.
- 10 1-Naphdata: N, N', N"-tris(1-naphthyl)-1,3,5-trianilinobenzene, see: Y. Shirota, SPIE, 3148, 186 (1990).
- 11 α-NPD: N, N'-bis(1-naphtyl)-N, N'-diphenylbenzidine, see: B. E. Koene, D. E. Loy, and M. E. Thompson, Chem. Mater., 10, 2235 (1998).
- 12 Y. Shirota, J. Mater. Chem., 10, 1 (2001) and references given therein.
- I.-Y. Wu, J. T. Lin, Y.-T. Tao, E. Balasubramaniam, Y. Z. Su, and C.-W. Ko, *Chem. Mater.*, 13, 2626 (2001).